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1. Introduction,

Two active areas of research in spectral methods are the definition of well-posed
approximations to the Navier-Stokes equations in which rigorous error bounds can be obtained,
and the construction of spectral-type techniques which are applicable to problems in general
domains. As regards the former, recent progress has established "staggered-mesh" formulations
resulting in well-posed, solvable schemes that are optimal in the velocity [27], [4], [5], [22].
[2]. As regard spectral techniques for simulation of flows in complex domains, several algorithms
have been proposed, including multidomain collocation patching schemes [11], [23], [20], [21],
[ 15] and spectral element variational techniques [25], [13], [26].

The first schemes which involved staggered meshes, resulted in well-posed problems (i.e.,
without any spurious mode in the pressure) for one-dimensional problems [27], [4], however
the extension of the ideas to higher space dimensions [22] introduced spurious modes into the
system [2]. Although a workable scheme can be achieved by filtering the pressure [22], it is
clearly desirable, in particular in three space dimensions, to construct a method in which the
problem is intrinsically well-posed. To this end, a collocation technique is proposed in [2] , in
which the velocity and pressure spaces are chosen o as to give a unique solution. For this last
scheme, an error anaiysis has been performed, and spectrai accuracy is proved.

The spectral element spatial discretization involves a variational projection operator
applied to elemental tensor product Lagrangian interpolants through local Chebyshev [25], [13]
or Gauss-Lobatto Legendre collocation points [26]. The technique is capable of handling general
geometries with relative ease, due to the "automatic" patching inherent in the variational
formulation. In this paper, we consider a synthesis of the staggered-mesh and spectral element
concepts that represents an enhancement of both ideas. The spectral element discretization benefits
by a significant improvement in the treatment of the pressure as compared to past methods, in
which either spurious pressure modes are present [25], or in which the pressure is treated

inaccurately [ 13]. The staggered mesh schemes are improved in that the error estimates obtained




for the variational spectral element discretization are better than those obtained previously for
collocation.

In Section 2, we present our numerical method as applied to a Legendre spectral
element-Fourier discretization of the steady Stokes problem. All results presented here extend
directly to higher space dimension, as well as to the unsteady case, as will be discussed in future
papers (see e.q. [19]). In Section 3 a theoretical analysis is performed, in which it is shown that
no spurious modes appear in the pressure. Furthermore, optimal error estimates are obtained for
both the velocity and pressure. Lastly, in Section 4, we present some numerical resutts. These are
in accordance with the theoretical estimates. We provide also some details on the numerical
implementation of the method that uses a new algorithm for solving spectral Stokes

discretizations, the details of which will be presented in a future paper[18].

In what follows, for any integer m and any domain A in R or [Rz, we denote bu CT(A) the
space of all functions that are continuous over A as well as all their derivatives up to the order m,
and by CS"(/\) the space of all functions that are infinitely differentiable with compact support in
A.

In order to precise the sense in which the equations we shall consider have to be understood,
we introduce some functional spaces. We denote by LZ(A) the standard Lebesgue space provided
with the norm | . ||, and the scalar product (.,.), (or .|l and (.,.) when no confusion can occur).
and for any positive real number r, the usual Sobolev space H'(A) provided with the norm || . Hr‘A
and semi-norm|.|_, (or|. [l and|.|. when no confusion can accur).

Finally, C will stand for various constants that may vary from one line to the other, and for

any function f depending on one variable x, we denote by f, the derivative of f with respect to x.

Acknowledgments : The authors want to thank C. Bernardi for helpful comments concerning this

work.




2. The Numerical Metho

2.1 The mode] problem,
Throughout the paper, Q is the domain Ax© , with A = ]-1,1[ and © = ]0,2mn[. The

generic point in Q will be denoted by x = (x,y). We consider the Stokes problem in the domain Q
for the velocity u = (u,v) and the pressure p, with no-slip boundary conditions in the first
direction and periodic boundary conditions in the second. The problem is: Find (u,p) such that
(2.1) -VAu+Vp=f inQ,

divu=0 inQ ,
with the following boundary condition
(2.2) Yyeo® , u(-1,y)=u(t,y) =0,
(23) VxeA , ux,0)=ulx,2mn) .

Here v is the kinematic viscosity, and f = (f,g) represents the density of body forces.

As is well-known, the appropriate space for the pressure is LS(Q) defined as follows

L2(Q) = {9 eL¥Q), [po(x)dx=0} .
We denote by €7 (Q) (resp. €5 (Q) ) the space of all functions that are infinitely differentiable
and are 2m-periodic in the second direction as well as their derivatives (resp. that are infinitely
differentiable with compact support in the first direction and 2mn-periodic in the second one as
well as their derivatives). In order to take the boundary conditions (2.2)(2.3) into account we
define the spaces Hgl#(Q) as the closure of Cg°’# (Q) into H'(Q), and Hé(/\) as the closure of
Co (A) into HY'(A). Let us define also, for any positive real number r, the space H:(Q) as the
closure of €’ (Q) into H(Q)

in this framework, it has been proved in [4] that the problem (2.1)(2.2)(2.3) is well
posed for any force in the dual space [H;,'(Q)]2 of [Hé‘,(Q)]z, the norm of which is denoted by
I.1I_; . More precisely we have
Theorem 2.1 : For any f=(f,g) in [H;1(Q)]2 , problem (2.1)(2.2)(2.3) has a unique

solution (u,p) in [Hé’#(Q)]Zng(Q) , and one has



(2.4)  ul,+lpll<Chtll, .
Forany f=(f,g) in [HUQ)1?, 0 >0, the solution (u,p) of the problem (2.1)(2.2)(2.3)
verifies

(28)  Nully,p+ Il <Clitl,

Let us write the dependent variables in terms of Fourier series in the periodic direction
( we denote by i the complex square root of 1)
(2.6) u,y) = o MO0 exp(imy)

p(x,y) = Z:z_w p™(x) exp(imy) .

As is well known, this procedure decouples all Fourier modes for the Stokes problem, resulting in
the following set of equations for the n" mode
(2.7), —\)(G;‘x ~ 20" « P = £,
(2.7), -v(@ - n%™ +inp"=g"
(2.8) U +ind"=0 ,
and

[Ap°0dx=0,
with the following boundary condition on u"
(29)  u'(-1)=u'(1)=0.

The following proposition is now straightforward.

Proposition 2.1: For any f=(f,g) in [H;‘(Q)]Z,thepafr (u,p) in [H;l#(o)]zng(Q) is

the solution of problem (2.1)(2.2)(2.3) if and only if its Fourier modes are solutions in
[Hg(/\)]zxLz(/\) for n =z 0 (resp. [Hg(/\)]zng(/\)for n=0) of problems (2.7)(2.8)
(2.9).

Our numerical technigue will be based on variational forms equivalent to (2.1)(2.2)(2.3)
and to (2.7)(2.8)(2.9). We first introduce the notations
X =[Hy (%, M=L3Q) ,




and provide X with the standard semi-norm | .|, of [H'(Q)1? equivalent to]] . I, over X.

The variational formulations are given by: Find (u,p) in XxM such that
(2.10)  v(Vu,Vw) - (p,divw) = (fw) , YweX ,
(2.11) (qdivu)=0 , YgeM ,
and ( dropping the subscript n ):Find (u,p), u=(u,v) in [Hg(/\)]zxLz(Q) such that
(2.12)  v[(u, w) +n? (uw)] - (pw, +inz) = (fw) , ¥V w=(w,2) e [H(AM]
(2.13) (qu +inv) =0, VqeLX(A)

Remark 2.1: Note that, for the case n = 0, problem (2.12)(2.13) is well posed only in

[Hé(/\)]zng‘(/\); in what follows we shall not consider that case for simplicity of formulation.

.2_The discrete fo lati
Let K be a fixed number independent of the forthcoming parameters of discretization. We
divide A into K subintervals A,,...,A¢ ,and set Q, = A, x ©. The spaces of approximation will
consist of functions that are piecewise-polynomial over A, and trigonometric in the second
direction. These discrete functions will be determined in order to verify problem (2.10)(2.11) in
a discrete sense. More precisely, we shall replace the integral appearing in the Lz(/\.)—soalar
product by quadrature formulas associated with the Gauss and Gauss-Lobatto points.

Let us introduce now the parameter of discretization h = (N,M), a pair of N2 with N > 2. We
denote by [PN,K the set of a1l functions that are polynomial of degree less than or equal to N on each
subinterval A, ,k=1,..K (inthecase K @ 1 we simply write Py ).

Next, we denote by S, , the set of all trigonometric polynomials of degree less than or equal to M ,
i.e.

Sy={olW= Z::_M " exp(imy) }).

Let us define now the quadrature formulas on A and ©. We denote by (Z;, w) for

i=1,.,N=1, the nodes and weights of the Gauss formula and by (&, o,} for i = 0,..., N, the nodes



and weights of the Gauss-Lobatto formula. The following relations can be found in {8] for instance
(Ln denotes the Legendre polynomial of degree n)

(2.14) YVie{l,., ,N=1}, L&) =0and L(E)=0 ,E,=-1, k=1,

(2150, V@ ePy g, Lo 0(@)w =], o0dk ,

(2.15)g, ¥V 9 € Pyy_y Zih':o 9(E)0; = [ 9(x) dx .

Over each subinterval A, k = 1,...,K , we then define a quadrature formula from the previous
one's by a suitable affine transformation. Setting A, = ] A, A, 4 [, we define over A, the sets
(T @ipdiqnor N By s 03 ); gy 88 follows

Ci =8 +(a, -9 W, + 1)/2

(2.16) Wi =20,/(8,-8) ,

Ex =8 + (g, -9 (& +1)/2,

0ix =20, /(3,1 -3) .

The previous points lead to the two discrete scalar products on 00(7\)
(2,17 Y (o) € [C(AP, (g, y)yg= T ZiN;: FICRITC RIS N
(2170, ¥ (9.0 € [CA? (9, W)y = Z:=1 ZiN=o (& w(E; )0,
Over ©, we consider the points ej = -1 +2jn/(2M + 1) ,j = 0,...,2M. They verify
(218) Vg €S,y , (2M/2M1) Tive 0(8) = [o o) dy .
This gives us the following discrete scalar product over 00(6):
(219) ¥ (9.8) € [CDT , (9,¥)ye=(2M/2M11) Tihg 0(8)u(8)
Finally we define the discrete scalar products over Co(ﬁ) :
(2.20)5 ¥ (0.0) € [PV, (@)ye = 2N/ M TN, Tht T2 000, 8)u(t,, 80,
(2.20)g, ¥ (p.0) € [CX(@)], (9,4, 6, = (21/(2M+ 1 ))Zf=1 Zto foo 90(&;, 8w (g, 80y,

Let us set

Xo =X NPy @ 0%, My=MN(Py @8, .
The discrete problem is: Find (uh,ph)in XpxM, such that
(2.21) \J(Vuh,Vw)h'GL - (ph,divw)h,G = (f,w)h'GL , YweX
(2.22) (qdivu), =0, YqgeM, .




Using the exactness of the quadrature formula (2.18) over S, x Sy we can, as in the
continuous case, decouple this problem into a set of (2M + 1) equations for the Fourier modes of
the solution: Find (uy,py) in [Py N Ha(A) 13 Py_2x such that
(2.23) V[ (U, Wy 6t n? (u, W o] = (pyW, +in2)y g = (LW 6

Vwz (w2 e [Py NHIAP
(2.24)  (@Quy, +invyye=0, YaePy oy

Remark 2.2 : We state here an equivalent pointwise interpretation of these problems. Let us
first work with the case K = 1. We consider first a discrete problem close to (2.23) : Find uy in

Py(A) N HG(A) such that

(2.25)  (uy, Wdyat N2 Uy = FWye » VW ePyN Ha(A)

We note that the products uy, w, and u,, w belongto P,,_, whence, from (2.15); and (2.17),

we can write

(2.26)  (uye WL = (Uyy W) = =(uy Wl e =(uy, Wyg -

Let us now introduce the Lagrange interpolant Q, of the point €, , im0,...,N, i.e. the polynomial of

P, that verifies

(227) Vi'=0,.N, Q&) =8, ,

where 6. denotes the Kronecker symbol. Takingw = Q,, i@ 1,..,N-1, in (2.25) yields, thanks to

(2.26),

(2.28) Vim 1, N-1, -uy(£)+nfuyE)=1(E) .

Problem (2.25) appears as a collocation approximation of the solution of the Poisson equation.
Unfortunately, the same is not true for the Stokes problem (2.23)(2.24). Indeed the

discrete scalar product (. ,. )y involves the points ;. Hence, we should introduce, as test

function z, the Lagrange interpolant corresponding to that set of points. Such an interpolant in the

expression [(uy, W, 6Lt n? (uN’w)N,GL] would not decouple the Gauss-Lobatto points. The only

equations we can obtain, in the case K = 1, are the following ( takew = (Q, » Q ), 1 <1, €N=-1,

and note that py Q,, belongs to P,_3 50 that (py , )y 6= (P » Q) = =(Pyy » Q) = = (P, » Qlygr )



V=1, N=1, =v[ug, - nPudCE) + py, (&) = f(E)
Viz 1, N=1 , =v[vy, - N2V J(E) +1 Zi.N;; QL )P (Cpw, = (&)
Vi=1,..N=1, [ug,+inv(t)=0".

Remark 2.3 : Let us now consider the case K > 1. Here, the interpretation of (2.25) involves the
various virtual boundaries a, , = A, N A, , k = 1,..,K-1. Indeed taking the Lagrange
interpolants of the points Ei’k different of —1 and 1 gives

(2.29) Vk=T1.,K, YizTN-1, —ug (&) +n’ugE,) =g,

(2.30) Vk=1,. K1, [-uy,(a)+ n? uy(a) = (g JCop ey + Qo) = Un,(80) - uy,(a7)

[here g(x*) (resp. g(x7)) stands for }im g(t) (resp. Jlim g(t)).]
t>x t—>X

t>x t<x
Let us note that (2.29) is a collocation method for solving the Poisson equation, while
(2.30) is, in a weak sense, the transiation of uy (a;) = uy(a;) since Ony @nd Qg ), ¢ A€ G(N2),
This condition on the derivatives means the continuity of uy, , which is the usual condition added to
a multidomain technique.
For the problem (2.21)(2.22), we could derive a collocation-1ike interpretation of

problem (2.12)(2.13) but this one is here not meaningfull on the boundary.




The main result of this section will consist in an asymptotic expression for the error bound
between the exact solution of (2.10)(2.11) and the approximate solution of (2.21)(2.22). The
result is optimal under the ( mild ) assumption that there exists a constant C* independent of h
such that
(3.1) M<C*N,

This is not a limitation for the practical cases of numerical interest, but, for the theoretical point
of view, we give in a final remark the behaviour of the error bound we can prove in the general
case. We don't consider the dependence of the error bound with respect to a possible growth of K
involving a decay of the measure of the A, 's; this is now under consideration . The analysis is
more technical since such a scheme would require a dependence of N and M with respect to the
measure of the A, 's and the various ratios of K, N and M would be involved in the estimate.
Nethertheless if K is fixed or bounded, the case of dependence of N and M with respect to k can be

handled by the same proofs as those explained in this section by using the general results of the

appendix B.

The analysis we are going to perform will use extensively some of the main properties of
the Legendre basis of polynomials. Let us recall them before starting the proofs. We denote by L
the Legendre polynomial of degree n and recall that L has the same parity as n and that
(3.2)  LG-D=CD", L(Mat.
next we give the formulas that can be found in [8; Chapt.2,87]
(3.3)  (L,,L)=(2/(2n+1)) 8 .,
(3.4)  ((1=X3)L) +nln+ )L, =0 ,
(38)  (n+DL,(x)=@n+1)x L (x) =nL _,(x),

(3.6)  [1, L@ de=[L,, (0 ~L,_,(x)]/(2n+1) .

As pointed out in [S] the existence and unigueness of the solution of problem (2.21)(2.22)
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relay on a compatibility condition between the discrete spaces My and X, . We first confirm this

out in subsection 3.1 .

31 s ties of the discrete di !

The main result of this subsection consists in the following
Lemma 3.1: Forany qin M, there exists a function win X, such that
(3.7)  Vk=1,..K,Vial, N-1, divw(t,, ) =a(;. ) ,
(3.8) Jwl,<cllall.

Proof of lemma 3.1:case K = 1. For any q in M, , we define a polynomial ¢ of
[Py N Hg(/\)] ® S, by the following conditions
(3.9)  Vi= 1L N-1, A®(L,, ) =q;,.) .
We prove in the appendix A.1 that such a polynomial exists, is uniquely determined by (3.9) and
satisfies the following bound
(3.10) @l <Clal .
Let us setw = (w,2) = grad ®, or again

(3.11) w=@ ,2=9,.
As an easy consequence of (3.9)(3.10) we obtain
(3.12) | Viml,. N-1, divw (g, )eqg;,.) ,

Iwll,<clall .

Let us search now a function ¥ in (P, ® Sy;) ® Ry such that
(3.13) \Pg(tl,.)n—@x(ih.) , Y, (21,)=0 .
To this purpose, let us write the functions ® and ¥ in terms of Fourier series in the second
direction, we derive
B(x,0) = T 3™ exp(imy) , ™ € Py NHIA) |
W(x,y) = 2:=_M UM(x) exp(imy) + Ay , U™ e Py N HG(A)
As a consequence of the fact that q belongs to Lg(Q), we obtain from (2.1 5)G and (3.9) ,
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0= [pdx[o dy AP(x,Y) = 21 f,dx (B, )(x) = 8I(1) - 82(-1) .
s0 that
(3.14) 32(1) =8%(-1)
Note also that due to the classical trace results ( see [14] ) we have
(3.15) 180 [<CI®) /00 <C 12 ll300 -
Let us introduce, for any m in N, two elements rr*n of P verifying
(3.16) | re(1)=1,r(-1)=0 ,r(x1)=0

rlt)=0,r (-Dat ,r(x1)=0,

and such that there exists a constant C independent of m and N
G nP e P aem e B e mlen B+ (m~ s 1P e m s 1B ml el < .
In order to find such elements, we define, for any y in IN, the polynomials Sy and §u by

5,(x) = x2_(1/2) x¥ |

5,00 = [(4y+ 1) x®* 1 —(2p+ 1) x™* '] /(4y) .
Then it is an easy matter to check that rf = Se(msace) * Seimsace) AT lements of Py and solutions of
the problem (3.16)(3.17)(remind that the constant C* was introduced in (3.1) to impose a

relation between M and N).

Let us define now W by its components &™ as follows
[vm=z0,im®m =d7(C-1)r + () Pt
(3.18) | ¥°=0 ,
x=-82(1).
It is an easy matter to check now that, as a consequence of (3.14)(3.16), (3.13) is verified. Let
us now estimate the H2- norm of W.
We begin by the H2- seminorm of ¥ and compute it as follows
N N N R R T
=T gm0 (/MO 5" B 4 2 e ml e 1) 180G

M " i12 2 2
+ Lo meo (/MO IE 4 m? e Pe m® et 12 (8101
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SN Pt Pl Tl T D DRI TSN
T e (MRS B T e B ml e ) m @I
From (3.17) , we derive as a consequence of [ 14]
W <C (T mIBNCDR + T m[8MCDE)
<C 2,103, ot 12,000013 500
<cle,l?,.
50 that
(3.19) W, < Cllel,q -
Using ¥, (&1 ,0) @ 0 and the Poincaré-Friedrichs inequality, we deduce that
(3.20) W, 00 <CI® I,y -
Besides, we note that W — Ay is a periodic function with zero average since VAR equal to 0. Hence,
it is standard to note that
1w =2yl < ClIY = Alloq <Y lon <CIW g
and from (3.15)(3.19)(3.20) we finally derive that
(3.21) |lwl,<clel, .
For the moment, we can notice that the function w defined in (3.11) is not in Xy, » butonly in
[Py @ Syl x [(PyN Hg(/\)) ® Syl . S0, let us setw = w + curl ¥, we note that
div w=divw + div (curi ¥) = A® ,
and (3.8) is an easy consequence of (3.10) and (3.21).

Proof of lemma 3.1:case K > 1 . Let us define the functions q, in Lg(Qk) as follows
v OGW €0, g 000 =a00) - o, & = [o alx,y) dxdy / meas(Qy)
Since we do not want any information for the values of g or div w on the virtual boundaries g, x ©,
we simply construct K functions w, oneach Q, ,k=1,.. K , as in the previous case such that
Vk=1,.K,Vi=z1, N-1, divw (T, ,.) =8, ,.) .
Iw o, <Cllacloq,
Let us define the function w over Q as follows

VxeQ, , wx)=w(x) .




Due to the fact that w, vanishes on the boundary of Q, , it is an easy matter to check that the
function w satisfies

Vk=1,.K,¥i=1 N-1, divw(,,)=q,,) -« .
We only need now to add to w a piecewise linear function to find the good solution. More precisely
we definew = (w,2) by

V(x,)eQ , | wix,y)=wlx,y) + o (x-a)+ Z;:: x, meas(A )

2(x,y) = 2(x,y) .

[t is an easy matter to check that w is still in H;’,(Q) since by hypothesis

210 Zfﬂ o, meas(A ) = [, q(x,y) dxdy = 0 .

The inequality (3.7) is also straightforward.

Remark 3.1 : We have used the hypothesis (3.1) in (3.34) and in the proof of the existence of
functions satisfying (3.16)(3.17). In the general case, when (3.1) need not hold, if we work with
more sophisticated combinations of the L; we can verify that (3.17) and (3.20) still holds with
CM/N? in place of C in (3.20) and following the same lines as in the proof of the appendix, we can
prove (3.10) with C(M/N)(1+CM/N?) in place of C . Furthermore, it follows from [4] that

(3.8) follows in the general case, with CM in place of C .

3. rror

Let us first put the discrete problem in an abstract formulation, in order to apply the
standard results of Brezzi [6] concerning the approximation of saddle-point problems like
problem (2.10)(2.11) ( see [10] or [5; sect.1] for more details and [ 1; sect.1] for a well-suited
generalization for the numerical analysis of the Chebyshev spectral method ).
Let us first define the bilinear forms
(3.22) ¥V (uw) € [C'@)P , aluw) =v(Vu,Iw) q
(3.23) ¥V (qw) e @)x (@)%, b(qw) =-(q,divw),
With these notations, problem (2.21)(2.22) can be rewritten as follows : find (uy,p,)in
X xM, such that
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(3.24) a(u,,w) + b (p, W) = (f’w)h,GL , YweX,
(325) bh(q,uh):o ) qu Mh f

The analysis of this problem will require four properties of a, and b, , that will be verified
in the following lemmas.
Lemma 3.2 : There exist two constants « and ¥ independent of h such that
(3.26) V(uweX?, guw <ylul,lwl, ,

(3.27) VueX , ah(u,u)zfxllullf .

Proof : The case K = 1 is standard ( see for instance [4; Prop. 111.4] ) and is based on the
following inequalities ( see [7; Lemma 3.2] )
(3.28) V(o) ePyxPy , (o,4)g<3lalllyl,
(329) VoePy, (9,0 >lol’.
We detail the analysis of the case K > 1. From (2.20),, and (3.22) we have
W (uw) € X, x Xy, a(uw) = (/M 1)) Ty i Tivg Ve, 8) VW, 8)0;,
from (2.18) we deduce
(3.30) V (uw)eX, xX,, aluw) =, dy [Z:ﬂ ZiN=o Vu(g, YVwE, o, ] .
Using (3.28) we obtain now
v (uw) € X, x Xy, a(uw) < 3 [ dy [T, | VuC 0l 19WC Wl T
< (3/2)fo dy [Ty | PuC 13 121 Zi, I Fwe . 13117,
<(3/2) Jo 1 ZuC 0 13 d0)'"? (o Il VWC ) [Fd) %
<(3/2) flully lwll, ,
which proves (3.26). From (3.29) and (3.30) we obtain (3.27) by using the same arguments.

Let us now analyze the properties of the discrete bilinear form b, .
Lemma 3.3 : There exist two constants 8,8, independent of h such that
(3.31) V(gw eM, xX , b(qw <8lglllwl, ,

[ P
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(3.32) VaeM,, sup baw)=8lal lwl, .
wE X,

Proof : From (2.18)(2.20), and (3.23) we deduce
K N1
vV (qw) € Myx X, baw) = o g [Z, Z;.y alt;) divw(enoe, 1.
Using the Cauchy-Schwarz inequality gives for any (q,w) in M, x X,

0y (aW) < fo 8y Tiesy (X3 FCeyomuy] L @ivw)(ey 0w, 17

<[foay Z:ﬂZiN;: qz(ti,l<’9)°"i,|<]”2 [fody Z:ﬂZiN;: (dww)z(ci,k’g)wi,k 1'%,

Let us notice that 6°(.,y) is in Pyy_y ; (2.15), yields
(333) by(aw) <lall [ dy ey Tio g (v, woy, 172,
Writing now divw in the Legendre basisover A, ,k = 1,...,K
(3.34) VxeA ,VYeO, k= 1,..K, divwix,y) = Z) o T, (U) LX)
gives
Z:ﬂ Z'iN=_11 (divw)z(ti,k’g)wi,k = Zszl Z'iN;: (Zh -0 Tnk(W L&) ) 0y
and finally
(3.35) lejﬂz'iN;:(dww)z(ti,k’g)(")i,k=z:<<=1z:=0 Z\T:o(Tn,ktv,k)(U)[Z?;: (WS E
As a simple consequence of (2.15), and (3.3) we deduce
(3.36) ¥V (nw),n+v<2N-3 , ;. (LLIC 00y = (L, , L) =6,(2/(2n+1)) .
Thanks to (2.14) and (3.5), we derive that
Viz1,00N=1, LG, = =UN=1)/N) Ly _o(E;)
Vi=1,,N=1, Li_(g)=0,
whence, using again (2.15), gives
Z:iNz—: (Ly Ly (50 Wi =((N-1)/N)? ZiN:-: (LN-Z)z(ci,k) Wik
= ((N=1)/N)? [\ (Ly_p) (%) dx
< 4/(2N+1) = 2 [ A (L2000 dx

ZiN;: Ly Ly (850 0y =0,
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ZiN:_: (Lyby (G0 wyy = =((N=1)/N) ZiN;: (Ly2) (550 @y
= = ((N=1)/N) [ (Ly_)%(x) o
< 2 [ALp200) dx

ZsN;: (Lyoibna (Gl = 0
The four previous equalities together with (3.35) and (3.36) yield

i1 v, oy <3 T4 Za o Zu o (T Ty )W) [ (LL)GO ],

< 3 [ 5 (divw)¥(x,y) dx
which, from (3.33) gives (3.31) with 8 = V3,

Let us now prove that the compatibility condition (or inf-sup condition) between the
discrete spaces M, and X, is satisfied. From Lemma 3.1 we know that there exists a function w in
X, such that
(3.37) Vk=1,.K,Vi=1,.N-1, divw(Z, ,.)=qy,.) ,
and
(3.38) fwll<clal .

With (2.15), and (3.37) we easily verify that

b,(qw) = (@@ =llal? ,
using now (3.38) yields

b, (aw) > Clallfwl, .

The previous lemmas prove that the approximation of the Stokes problem by the scheme
(2.21)(2.22) is well-posed. More precisely we obtain
Theorem 3.1: Forany fin (Cfi(()))2 , there exists a unique solution (u, , p,) to problem
(2.21)(2.22). Moreover, if we assume that hypothesis (3.1) holds and that f belongs to
Hf,(Q)2 , 0 > 1, the following error estimate for the velocity and the pressure holds for any
u>1/2
(3.39) llu-ull, +lIp-pll<CM+ (L+MNONZ) 18],




Proof : The existence and unigueness of u, and p, follows directly from Lemma 3.3 and 3.4 and

[10, Theorem 1.1 ]. Moreover another consequence of that theorem is the following

(tw) — (f,w), o

(3.40) flu-ull,+lp-p,ll<Cl inf Jlu-wl+inf |lp-qll+ sup Twil !
weX, qeM, wex, W

and the result is an easy consequence of Theorem 2.1, Theorem B.S, Corollary B.1 and Theorem

B.8 of the Appendix.

Remark 3.2 : Note that Theorem 3.1 still holds when f only satisfies

see appendix B.
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4, NUMER|CAL RESULTS,

4.1 Implementation.

In this section we describe the details of the discrete equations (2.23) and (2.24). We start
by defining the bases for the space [Py, N Ha(A)]? x Py.2x in which we search for our solution
(uN,pN) . As described in Section 2.2 A is divided into K spectral elements AjgrnNg - Ineach
element A, the velocity uy of [Py N Ho(A)]? is expanded in terms of N order Lagrangian
interpolants Q; (see (2.27)) through the Legendre Gauss-Lobatto points ;. We then define a
mapping 8 from x € A, ontor € I=]-1,1[asr= -1+ 2(x - 3,)/(a_,, - a). Then we state
(4.1)  ¥xeA, , ur,) =ux,)
and
(42)  uir,) a TV, uralr).

Here uf = uy(E;, ,.) is the velocity at the (local) point &, in the interval A, ; that is,
(4.1)(4.2) is anodal basis. Similarly to the velocity the data f is also expanded in terms of Nt
order Lagrangian interpolants through the Legendre Gauss-Lobatto points &,

(43)  f(r) = LN, tan).

The pressure py € [PN_Z,K is expanded in terms of (N—2)th order Lagrangian interpolants C)i

through the Legendre Gauss points T, ,

(4.4)  pk(r) = ZM1pka,

where pr = pn(G;) is pressure at the (Tocal) point T;, in the interval A, . Note that the Gauss
points are naturally suited for the pressure, which need not be continuous across elemental
boundaries.

The expansions (4.1)-(4.3) are now inserted into (2.23) and (2.24), and the discrete
equations are generated by choosing test functions w € [Py N H(;(/\)]2 in (2.23) which are
unity at a single ¢, and zero at all other Legendre Gauss-Lobatto points, and test functions
g€ Py_ox in (2.24) which are unity at a single C;x and zeroatall other Legendre Gauss points.
To evaluate the integrals in (2.23) and (2.24) we use numerical quadrature through the Legendre

Gauss-Lobatto points &, and the Gauss points ,;, ,denoted (. , . )y and (., . )y
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respectively. The first term in (2.23) can then be written as

(45) (o, Wy = Zisy (L /2) Z?:O Z 0 Om Dimi Drn; “J"( »
where the derivative matrix D is defined as

(4.6) D, = (dQ,/dr) (E).

We recall that o, are the quadrature weights associated with the Legendre Gauss-Lobatto points

g, ,alsol, = (ak+1 - ak) and Z' denotes direct stiffness summation.

The second term in (2.23) becomes
(4.7)  (uyWyg = 2,5 (L, 72) gyuf
while the right-hand side of (2.23) can be written as
(4.8)  (twyg = 2,5 L, 72) of .

The left-hand side of (2.24) becomes

. =k ok

(4.9)  (quy, +Invyyg = w; (Z; Dy uf +in L /2T v))
where the derivative matrix D and interpolation operator T are defined as
(4.10) qu = dQ,/dr (Cp) ,

(411) 1, = Q%) .
Note that in (4.6) no direct stiffness summation need be performed since the Legendre Gauss
points t,i’k are all distinct.

In matrix form the set of discrete equations (2.23) and (2.24) can be written as
(4.12) A,Lu-G,
(4.13) D u=0
where A_ is given by (4.5)-(4.7) , B,y DU (4.8) , Dypp DY (4.9) , and G,,, isthe

adjoint-matrix of D, - The Uzawa method used to solve (4.12)-(4.13) will be described in more

poBt

details in a future paper[19]. Basically, it consists in solving the following zero'—order equation
for the pressure
-1 -1
Do (Agpp) GyppP = Dy (A) B T,

by using a conjugate gradient algorithm, and then recovering the velocity from (4.12).
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In this section we discuss some numerical results obtained by solving the set of discrete
equations (4.12)(4.13). Two test problems have been solved, both in which v=1 and n=1.
The solution (u,p) and the data f = (f,g) for the first test problem are
U= -(1+cosTXx)/T,

v = isinmtx ,
(4.14) p = sinttx ,

f= -(1 +cosTx)/T

= i+ sinmx

while the solution and the data for the second test problem are
u=-(1+cosmx)/m ,

y = isinmtx ,

(415) | p = sinmx |x-1/2[%2"7

fz [=(1+cosTUX)/T +¥+2/3) sgn(x-1/2) |x=172[*?7 ],

g= 1[(2+m®) sinmx + [x-1/2 23],

Note that the solution and the data in the first test problem are infinitely smooth, while the
regularity of second test problem is determined by the value of Y , which is assumed to be an
integer.

In the first test problem A is divided into 2 equal subintervals A, and A, ,ie k=2,
while in the second test problem only one element is used, i.e. K = 1. The numerical solutions are
compared with the analytical solutions for different values of N , the order of the polynomial
expansions (4.1)(4.3). To measure the error in the numerical solutions, the following error
measures are used :

(4.16)  lu-uyll g = {4 (L/2) TZ1 L, 0 (T [DCutE;)-ub) )% + [ule;)-u1) 1}
(417 lp-pyllys = {2 (L/2) (T17] 0 [a(g,0-pH1D) 2.

In the first test problem we obtain exponential convergence as the order N of the polynomial
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expensions is increased. Figure 1 shows the error in the velocity and the pressure as a function of
the total number of degrees of freedom (Legendre Gauss Lobatto points) in the x-direction. The

rapid convergence rate is expected due to the fact that the solution is analytic.

In the second test problem we obtain algebraic convergence as the order N of the polynomial
expansions is increased. Figure 2 shows the error in the pressure as a function of the total
number of degrees of freedom (Legendre Gauss Lobatto points) in the x-direction for ¥y @ 3 and
¥ = 5 . The convergence rate is given approximately as N~ ) Although the error estimates
(3.40) is somewhat pessimistic as regards the error due to the forcing term (f € H¥ =
Ip-py Il < N'=Y) | as regards the approximation errors (p € HY*'= lIp-qyll < N'"¥) the bound is

quite tight.
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A 1X - i i iscrete lac uation.

The proof of the compatibility condition between the spaces of velocity and pressure
involves some results concerning the approximation of the solution of the Laplace equation by a

collocation method based on the Gauss points.

LemmaA.1l: Foreny qin M, there exists a unique ®in [Py N Hg(/\)] ® Sysuch that
(A-1) Vi: 11"')N_1 ’ A@(Ci)'):q(CiJ') .

Proof : Let us consider the collocation problem : Find ® in [Py N Hy(A)] @ S, such that

(A2)  Vi=1,.N-1,¥j=0,..2M, A(Z;,8,)aq;,8).

It is an easy matter to check that ¢ satisfies (A.1). Multiplying both sides of (A.2) by
(2n/(2M+1)) w(g,, 8 )w, and summing up with respect to i and j leads to the equation

(A3) VWYePyoS, ., (ADW),  =(q¥), .

Taking W equal to the Lagrange interpolant of the point (T, , 8, ) in [Py N Hg(/\)] ® Sy , proves

that the problem (A.2) is equivalent to: Find @ in [Py N Hy(A)] @ S such that
(A4 VY¥e[PyNH(A]es, , (AW, a(q¥), .

Let us set
(A5) V(¥ X)e{[PyNHy (A @8} , c(¥,X)=-(AW¥, %),
In order to prove that ¢ is continuous and elliptic, we recall that (see [2; Lemmalll.1])

(A6)  YyePy, , [4(1-x®) p00)?dx < ((1-x2) yudys < 2 5 (1-xD) y(x)? dx

and that (see [2; Lemma I11.2])

(A7) VyePy, , ON'[, (1-x®2p00% dx < ((1-xD2p 46 < C [ 5 (1=xD)2p(x)? dx.
For any W and X in [Py M Hy(A)] @ S,, we derive from (2.15), and (2.18) that

(A8) oW, X)= [o [-(¥, (0, X Cuye + (W00, X (Lu)ye T dy.
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Let us write W(.,y) and X (.,u) in the basis (1-x?) L'n ,h=1,.,N-1
W = Lot ww) (1) L)
XOGW = Ty %) (153 LX)
Using (3.4) gives
LW (W X6 = et Ty W) (W 2@+ 1) (=X)L, Lo Dy
From (2.15)4 (3.3)(3.4) and (A.6) we deduce
(A9)  =(¥,, (0 X( Yy e < (47(2n+1)) Z?:: W (WR W) (1)) < 2 [ LW, X (x,) dx
and that
(A10)  =(¥, W)Wy 2 272011 (WP (e 12 3 = [ W, (0¥ (x,u) dX
Let us write now
W () = (1-x3) B(x,y) ,
X, (6,0) = (1-x3) X(x,0)
using (A.7) yields to
(A1) (WG X Gy <C (W)X (),
and to
(A12) (W00 W ,CWye 2 N W v Gy
Finally, due to (A.8)(A.9)(A.11) and the Poincaré-Friedrichs inequality, we deduce that ¢ is

PRI SR, S o mead D e e
tirvatAarim il OAnT YN
MITEED Iy wviana

over [Py N Hé(/\.)} & S, . Dueto (A.8)(A 10)(A 12), we derive a
(nonuniform) ellipticity of ¢ over [Py Hé(/\)] ® Sy , more precisely, we obtain
(A13) VW e[Py,NHIA oSy , e w)=CN w2,

From the Lax-Milgram lemma we conclude that problem (A.4) is well-posed, i.e. (A.4) admits a

s
(§¢]

i
[RE A2V

unique solution® in [Py, N Hé(/\)] ® S, . Besides from (A.13) we derive the following estimate
(A14) ol <cN gl .

In this second lemma, we are going to derive a uniform bound for the H'(Q)-norm of d .
Lemma A.2: The solution ® in [Py N Hg(/\)] ® Sy, of problem (A.1) satisfies the following
estimate
(A.15) [le iy <Cliall.
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Proof : Let us choose now ¥ =, in (A.3), we derive
@ ®ne + PuPudns = @206
and we obtain from (2.15), , (2.19) and (2.20), that
(A16) (19 17 - [o @ D Ins <lalll @, Il .
Writing® (.,4) in the basis (1-x*) L, ,n=1,..N~1,
A1) VO e, 20w = Zony ¢ (W) (=xBLK) | 9 €5,
gives, as in (A.10),
(A18) =@ @, o> (2/(2n41)) Ti_y o0, (w)2 (s 12> [, ®Z (x,) dx .
Finally, we conclude with (A.16) that

(A19) e, 0y <2lall .

X%’

Unfortunately, the inequality || ‘PW [l < Cllqll is not so easy to derive. This is done is the
following temma.
Lemma A.3: The solution ® in [Py N Hé(/\)]@ Sy of problem (A.1) satisfies the following
estimate

(A.20) [le,lly <cllall.

Proof : We first define a function ® such that

(A21) Vi=1,. N-1, &(,,)=0,.) ,

and such that the inequality || @, Il < C [l q || holds. To this end we use the basis (1-x3)L.
n=2,..N,

(A22) V(x,y)€Q, ®(x,y) = Z:zz 7,0 (=X L), 7, €8

From (3.4), (3.5) and (3.6) we obtain that

(A23) | (1=x3) Ly(x) = (1=x%) Ly_p(x) = N(2N=1) L() + N(2N=1) x Ly_,(x)

(1=x3) Ly () = 2 x Ly_y () + NON=1) Ly, (),

n ¥

so that
Viz1uoN=1, (=8DL(E) = (=X)L, (€)= N2N=1DL(T) |
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Viz 1, N=1, (-T2 (8 = 28, Ly (L)
Hence the function ® defined by
(A24) ¥ (xy)€Q, dx,y) = Z:f;: 1.(9) (1=x®)L () + 27y, (Y) xLy_4(X)
# (WL =xP) L, (X) = N2N=1L, 001,
satisfies (A.21).
Moreover we have
(A25) ¥ (x,9) € Q, (x,u) =®(x,4) = 9y_, () (N(N=1)) Lyy_, ()
- DY) (NC2N=1)) x Ly_,(x) .
Using now (A.3) and (A.21) gives
(@ Pydne + (@gg’gpgg)h,ﬁ = (q,C'PW)hﬁ ,
s0 that as previously from (A.18)
(A.26) [, I+ @, B, ne <Nal? .
From (A.24), we obtain
(A27) ®,(xu) = TN 0w (1=x) L) + (oo (W) + (W) (1=x3) Ly_,(x)
+2 My () x Lo () =y (0) (INC2N=1)) Ly(x) .
Using now the formula derived from (3.3), (3.4) and (3.6) yields for anyn > v
[ (1=x®ZLOOL00 dx = [A(2x L () = (n(n+ 1)) L)) (1-x?) Ly(x) dx
= [ =xB) L)) (2 XL, 00)) = (n(n+ 1)) L () (1-x7) L (x)] dx
= [ = (0(n+ 1720+ 1)) (L, () = Ly (x)) (2% L (X)) dx
~ A1) L) (1=xB) L (x) dx
= [, (n(n+1)7(2n+1)) (L, (0)) (2 XL, (X)) d
= A (0 1)) L (x) (1=x3) L, (%) dx
=X, 6, -
To derive the value of X we only calculate the leading coefficient of 2 xL,:(x) and (1-x2) L;(x),
this is done by using (3.5), we obtain
A, = JA (n(ne1)/7(2n+ 1)) (L, (x)) (2(2n=1)(n=1L () + ..
+(n(+1)) L) (n(n=1) L(x) +...) dx;
and by (3.3),
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Ay =2 (=n(n+1)(n+2)/(2n+1) .
The case n < v is treated in a symetric way. We can write, for anynand v in N
[A x®ZL0OL ) dx =X 8, .

We compute from (A.23) and (A.27) on the one hand
(A.28) 13, IR =0 51012, + Doy + 1 By + 400y, IR XL, 12
w1 oy 1P 2IN2N- 1131 /(2N 1))
and on the other hand from (2.15);
(A29) @B, 000= Zaa I BNy + o + 1 P + 4100, 12 O Ly Ly
+ 1oy I INCN= 112y Ly
= 2 (N(2N=1)) Cy_p + Dy By Do (C1=x3) Ly Ly 4 Ly s -
From (2.15);, (3.3) and (3.5) we deduce
(A30)  (Lylydye= (1=-N"DZ (Ly o Ly odns = (1-NTDZ (Lypulyp) 3 17(2N41)
Using now (3.6) combined with (3.5), we compute
XLy_q = (N=1) Ly_y + (2N=5) Ly_3 +(N=4) Ly ¢ + XLy g
so0 that
Ly Ly = (2N-5)2 [2/(2N=5)] + |(N=4) Ly_g + XLy_s I
and
IxLy_q 2= (N=1)2 [2/(2N=1)] + (2N-5)% [2/(2N=5)] + (N=4) Ly_g + XLys I .
We conclude with
(A3 Ixby 1P < 2Py oLy g -
Finally, from (3.5) and (2.15);, we derive that
((1=x®) Ly g Ly e = CN=1)/ZN) (=3 Ly s Lo s
= ((N=1)/N) ((1=x3) Ly_p s Lyp )
Next, using (3.3), we obtain from the equality (1-x%) Ly_, = ~(N=2)(N=3) Ly_y + ...
(A32)  ((1=x®) Ly Ly Dy = - 2(N=2)(N-3)(N=1)/N(2N-3) = G(N)
Recalling now (A.26)(A.28)-(A.30), we prove that
(A33) 1@ I<clial+ N2y, + oyl + N2 1D
Formula (3.6) combined with (A.17) and (A.22) yields

PO
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(A34) | Dy_o(9) + 1y(Y) = 9y _5(U)/(2N-5)
My_1(U) = 9y_(W)/(2N=3)
(W) = gy, (Y/(2N=1).
In order to estimate IICng | we note that, from (3.3)(3.6) and (A.25) we obtain
[y, Il < C U@y 0+ N2y 1T+ N2y 1]
and from (A.33)(A.34) we deduce
ey, < Cllal+ N2 [l o0+l opall« o, I .
Let us now use the inverse inequality
V(rs)eR?,0<r<s,vyees, ,Ixl,scm Iy,
it follows that
e, h<Clial+MON20 oy gl + 1oy ol + oy D] .
It is an easy consequence of (A.17) that
TN 0 (2 (n(ns 12 2/(2n+ 1) < [A®Z, (x,0) dx

so that, from (A.19) we derive

N2 [ o sl+ oy ol + oy Il<cClall ,

hence, we conclude
(A35) @yl <cCr+M/N) Il ,

which, thanks to (3.1) and (A 19), finishes the proof of Lemma A 3 .

As a conclusion, we state

Theorem A.1: For any qin M, there exists aunique ®in [Py N H(A)] @ Sysuch that

Viz 1, ,N=-1, A®(T,,.) =q(;,.) .
Moreover, ® satisfies the following bound
(A36) lel,<cClaqll
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Appendix B—- Error Bound for the Projection and Interpolation
Operators,

The final error estimates require some technical results about the orthogonal
projection operator for the Hg',(Q)—scalar product onto the space lPN,K ® Sy and interpolation

operators with values in the same space.

5.1 Tt _di ional

In this paragraph, we extend the results of [7] and [16] to state some properties of the
approximation operators over lPN‘K. See also [9] for some partial results in this direction.

The possibility of using different values of the parameter N in each subdomain Q, was only
evoqued in the previous part of the numerical analysis. The only difficulty that this should imply,
would be to complicate the reading of the proofs, and absolutely not of mathematical nature.
Howether, here we shall consider such an eventuality since the extension from the case where N is
assumed to be constant, to the one where N is variable, is not straightforward. The interest of
doing so is to be able to fit the regularity of the solution and, in particular, to increase the number
of degree in the region where the solution is a bit less regular. This is a first step toward the
general situation; the second one will take into account the size of A, and the possibility of taking
the parameter K as adiscretization parameter,

Let us define for each k, 1 < k < K, an integer N(k), that will take now the place of the
previous notion of N, the degree of the polynomial in the nonperiodic direction; the corresponding
space of polynomials over A will be noted ﬁ)N,K(A) and will consist in

Pux(A) = Lo e LA, 91, € PrnAD )

(note that from now on , we shall precise the interval where the variable are defined for the
various spaces of polynomials).
The regularity of the solution being possibly different on each A, , we introduce some spaces with

broken norms. More precisely, for any K-tuple of positive real numbers ro (r1, r2,...,rK), we
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define
AT(A) = {9 € LA(A), 91n, € Hr"(/\k) b
this space being equipped with the norm
Vo eFA) L loly= [T Nol? o 1"

First of all, let us consider the L(A)-projection operator TT, onto Py (A) . We have
Theorem B.1: Let rbea K-tuple of nonnegative real numbers. We have for any function ¥ in
H(A)

B =T Wloa<CIEE, NGO * 12 A 072
Proof : First, we note that from the definition of Ty, , we have
(B.2) VWelXA) , Ve eby (A, (¥-T[,Wwe), =0,
so that for angyk in N, 1 <k <K, we have

VW eLAA) |, V@ ePyy(AY 5 (V=T Pdx =0,
hence we note that (TIN\P)Mk is the projection of WI/\k onto Pyo(A) with respect to the

L2(/\k)—scalar product. As a consequence of classical results (see [7; Theorem 2.3]), we derive

that for any r, > O, we have

r -r

k k
VW eH A L =Tl llga < CNK) PIW L A, -
Summing up the square of these inequah‘ties we deduce that

VWA [ W-TTy w2, = Zooy lW-T0 WlléAk
<CTE N k||xy||

AT
and (B.1) is proved.

Next, we state the following inverse inequality
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Lemma B.1: Let rand s be two K-tuples of real numbers, such that for any k, 1 <k

N

K,
0 <r,<s,. Wehave for any any function Win Py(A)

6.3 1Wlp<C TR K Wiz A 17

Proof : Here again this result is a simple consequence of the following classical inverse inequality
over Py(]a,b[) foranyaandb inR:
(B.4) VwePylabl) , V(0,00 €R? 0<0 , Wl oy <CNF 2 Wiy -
Indeed, we have
Vv eBu A L IVIEL = T IVIE A
from (B.4) applied on each subinterval /\k , we deduce that
Vv eBA) L IVIE, <ozl N IVIZ A,

and (B.3) is proved.

Now, we are interested in some projection operator from Hg(A) onto By (A) N Hg(A).
Theorem B.2: There exists an operator T’I,] from Hé(/\) onto Py ((A) N Hg(/\) verifying
for any function ¥ in H3(A) N H(',(/\) , with s being one K-tuples ofreal numbers > 1

K re-s) 172
(B5)  Vr=(r)ie 0 <!, W-Twl . <ClZy, NG Wiz A 17
Proof : Let us recall that, for any a and b in R, there exists a projection operatort from
H'(Ja,b[) onto Py(la,b[) satisfying (see [3; Corollary IV.2]) forany O <r< 1 <s
(B.6) VweH(Jabl) ,lw-mwll
and
(B.7)  mw(x1)aw(x1),

r-s
r,Ja,bl <CN ” w ”s,]a,b[ ’

Let us define the projection operators LT for any k in N, 1 < k < K, as being the projection
operators from H1(/\k) onto Py (A,). We deduce from (B.7) that the element U W defined on
each A, by
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VxeA, , T W) = Tk WA ) )
is an element of Py, (A,) N HJ(A) that satisfies, due to (B.6)

. 2(r -s )
W= T W llo o <CIZE NGO S i A 172

Then, (B.S) is proved .

Let us analyze now some properties of the operator of interpolation Iy, in Py ((A) over the
Gauss-Lobatto points. Since the degree N(k) of the polynomials of approximation can vary with k,
we must redefine the points of interpolation. It consists over each A of the (E;,); o yqq defined ina
similar way as in (2.16). Using the same techniques of decomposition of the interval A in
U:=1 7\k, we deduce from the classical results on the operator of interpolation in [PN(/\) over the
Gauss-Lobatto points (£, i=0,..,N ('see [7; Thm. 3.2]) that
Theorem B.3: Let rbea K-tuple of real numbers, such that r, > 1/2 .We have for any

function W in H(A)

. K 1-2r
(B.8) W -Tyg Wloa<CIZyy NGO K IWIZ L 1"

B.2 The two—di ional

In this paragraph, we shall combine the results of section B.1 with the classical resuits
concerning the approximation theory related to the Fourier case. These results and the technigues
we use are very close to those of [4; Appendix]and [17].

As in the previous section, we shall consider that the regularity of the function we want to
approximate is different on the various Q, . To this hand, we associate with each Q, a couple
(N(k), M(k)) of integers and consider the space of approximation

Bz {9el?Q), VK, 1 <k<K, g € Pyy(AY) @ Sygy )

Then, for any K-tuples rand s of positive real numbers, we consider the spaces
H™(Q) = {9 € L%Q), VK, 0 <k <K, 9 € Hr"(/\k;f(@)) NLAAGH @) ) .

As in section 2 , we define also the spaces H™3(Q) as being the closure of €(Q) in H*(Q). We
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shall use in the proofs some norms over Q, , the space Hr(/\k;Lz(e)) is provided with the norm

. “r,o,ok ; the space L2(A;H3(©)) is provided with the norm || ”0,5.0k .

First of all, let us consider the L2(Q)—pr0jection operator T'[h onto é&h in LZ(Q). We have
Theorem B.4: Let rand s be two K-tuples of real numbers. For any function ¥ in H™3(Q)

-2r -2s
(.9) ¥ -TtWlop<CIZ, (NK) MR o + MG WG, A 172
Proof : Let us denote by T[J the Lz(e)—projection operator onto SM(@). We recall the following
inequality, valid for any « > O ( see [24])
(B10) VveHUO), lIv-T(Ivlee<CM VI q
Then, as in the proof of theorem B.1, we derive from the definition of the LZ(Q)—projeotion
operator that ~TTh coincides over Q, to the standard projection pk from L2( QO k) onto

Prao (A © Sy - It was proved in [4; theorem A.1] that
-2r -2s
¥ =Py Wl <CING) *IWIE o0 + M) *IWIE, A 172,

,
we deduce that

~ K
”q;_‘[‘[h\p "0,0 < Zk=1 ” V- Fsk W ”gi()k

K -2r -2s
PRGOS B R PN (GO B FNND)

and (B.9) is proved.

In the case where N and M are constant, we have simply for the operator TT, of projection
over Py(A) ® Sy .
Corollary B.1: Let r anonnegative real number. We have for any function ¥ in H(Q)
B W-TOW g <CNT+ M) W],

Proof : It suffices to notice that HJ(Q) coincides with H'(A; L2(@)) N L2(A; H(O)) (see [14;
Chap. 4, Proposition 2.3]).

Next, we state the following inverse inequality. We first define, for any K-tuples rands of




-33-

positive real numbers, the space
r.s _ 2 "k 1k
FHQ) = {9 € LNQ), gy € H(AGH(O))
Lemma B.2:Let rand s, rand s be K-tuples of real numbers, such that for any K,
1<k<K,0<r srand 0<s, <s. Wehaveforany ¥in &,

4(r,'-r,) 2(s '=s,)
(B.12) W S0rs(Q) <C[Z:=1 NCGk) ¢ M) <k “W”2Hr"(/\k;Hik(®)) 1172

Proof : The following inverse inequality, valid for s < s’ , is classical
(B.13) Vvesy@) , lvlye<CM lvl,e
We derive immediatly (B.12) from (B.3) and (B.13).

Corollary B.2: Let rand r'be two nonnegative real numbers, r <r'.We have for any ¥ in
PN,K(A) ® 5,(9)

(B4 IVl <CONT oMY [ 2,0 IvIZg 1172

Proof : Once more, we deduce (B.14) from lemma B.2 and from the fact that H;(Q) coincides
with H'(A; L2(@)) (1 L2(A; HI(0)).

Now, for a given real number, we are interested in a-projection operator from Hé'#(Q)
1 2
onto &y = &y N He(AL(O)) .
Theorem B.5 : There exists an operator U, from Hg (Q) onto &, o verifying for any

function ¥ in H"T(Q)N Hé(/\;LZ(O) where r isa K-tuple of real numbers < 1
.1 K 2(1-rk) 2(1—rk) 9 172
(B.15) W =TT, w i o < CL 2.y [NCK) + M(K) I P
Proof : The great difficulty in this Theorem relay on the fact that the degree in the Fourier
direction are different in each Q, but the resulting approximation has to be globally in H’(Q)

which implies that at the boundary a x©, the trace of the approximation must be in Su(k) with
(k) inf (M(k-1), M(k)).
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Our proof will be decomposed into 3 steps, and we first assume that r, > 2.
1) 1t is a standard result of the trace theory (see e.g.[12]) to note that if ¥ belongs to
H™a)n Hé(/\ :L2(©)) the first trace can be defined over each a,x®, more precisely, the
mapping

W {y =V 1<kgKet}

la xO "’
rr Kel sup(rk 1rk) 172
is continuous from H™T(Q)N Hy(A;L2(@)) N LA H1(@)) into TT, ., H

Besides, for any k, 2 < k < K, there exists a continuous inverse mapping (see e.g. [12]) that
sup(r -1 y-1/2

(9).

associate to each q;k ofH

©), an element R (y, ) of
sup(r

L, o g (A_1x9) x H Mt (/\kxe) whose first trace over a x© coincides with y, and
whose first trace over a,_;x© and a,, ,x© is zero. In particular the continuity of each R, that we
can formulate as follows

(B.16) V¥ y, € HX®), IRy, o172 < Clwnl,

implies that the mapping R that associate to each W of H™(Q)N Hé(/\ :L2(0)) the element of
L2(Q) defined as follows

VK, 2<k<K-1 [R, W

laxola, * Ret¥la xola, -

Yo, = Re¥g w0ln, » R¥0, = Rt xolin, -

satisfies RW¥ belongs to Fls‘;(Q)ﬂ Hg(/\ L2(@)) with s defined by
(B.17) ¥V k, 1 <kgK,s, =infCsup(r,_,,r), suplr ,re, ),

W =
[oN

where we have set ro=rgeq = 0. Moreover, we also have
(B.18) VK, 1<k<K, (W-R¥)y €Ho(Q) .
k

2) It is an easy matter to find an element of &Qho that approximate ¥ = W — RW. Indeed it suffices
to take over each A, (TTN(H@TTM(H)W since this element vanishes over each elemental
boundary. Moreover, it verifies

(B.19) W= (Tl @ TLr)¥ lly o < CC %= mN(k)®ﬂﬁ<k))q’”|_2(/\k-H‘(@))

+ ”q;‘(ﬂrjl(k)éaﬁ;(k))q}“H1(/\k;|—2(@)) )
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We write the first term
& 1 * h N\ 5 1 N
o P
Now, we recall that T[;l' commutes with the differentiation operators and satisfies for 0 < r <s
[24]:
(B.20) VveH(®), [v-Tvlle<CM™Iv],o -
Using (B.5) for r = 0, (B.20) for r =s =1 and (B.20) for r = 1 givesfor s> 2,
1-r
5 1 * N5 ke, g ro-1
”lll_ (nN(k)®ﬁM(k))\p"LZ(/\k;Hl(@)) <C (N(k) "WHH k (/\k,Hl(@))
1-r
kg r
Moreover, it is standard to note that, for r,
(B.21) HXQ) cH (A HLON.
Hence, we obtain for s > 2

1-r

{er
(8.22) - (Mo TVl A 1oy < € (N “aM) NP g,

In the same way, we write the second term

* ~ 1 =~
+”\P (|d®ﬁun\)\p “H1‘,/A‘. .|2(\/_\'\|\.
Using (B.5) withr = 1,(B.20) withra s=0and (B.20) withra 1 gives
1er
~ 1 -~ k ~
1% (Mg @ TR 1, s 12000 < € N T IV 12c0))
1-r
ks r -1
AL A NN U
s0 that, by (B.21)
1-r 1-r
k kN e

Finally, theinequahtles(B.19)(B.22)(B.23) imply
1-r

tr
(B.24) W= (Tyy@ T ¥ llg <CNGK 4 )TN, o

(cf. [14; Chap. |, Théoréme 5.1]).
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3) The same technique can be applied to the restriction of each RKWIa toQ,_yandto Q, . But
xX©
here we know that the element R W has the best regularity of ¥ over Q, , or Q . We
K*|ayx® k-1 k
approximate RKWIaKxe by an element of P ,(A,_;) x S, over Q,_; and by an element

of Pl A x S over Q  where we have set n(k) = inf (N(k-1),N(k)) and
m(k) = inf (M(k-1),M(k)). Summing up the resulting approximations we derive an

approximation 7, (¥) of RW in &, | that satlsfles
r) 1-sup(r

r)
(B.25) | Rw-nhw)u,nkgcm(k) T ) =Y RKthX@nsup(rk_prk)

1-suplr, ,r,. ) 1-sup(r

)

ket Kkt

+n(k) +m(k+1) )”RK+1W|aK 1><G)”sup(r'k,rk+1)
+

Finally, we deduce that the polynomial Q, = (n;(k)@n;(k)m + T (W) satisfies
v~ Ql, 0= =1+ RY - QI as < ey - (ﬁN(k)@)ﬁM(k)N ”1,0 +|RY — (W) ”m
and the result (B.15) follows, when all the p, are > 2, from (B.17)(B.18)(B.24) and (B.25)

since
2(1-r) 2(1—r

W =TT g <l¥ - Qll g <CIZEL INK Kemt) STIwIE o 177

The projection operator TT, is stable in the H'(Q) norm then we have

” Y- T_[hqj “1,() < ” b4 ”LQ
The general result follows by using the main theorem of interpolation between Hilbert spaces of
[14].

We wish to obtain an error estimate for the interpolation operator. Let us denote

by x; , T, = (i,,3) » 0 < i < N(K), 0 <j, < 2M(k), the points (§;,, “B'j'k) where

ik
B, = -1 + 2§, /(2M(k)+ 1) . Let us defined the operator I, from C°(Q) into &, by
(B.26) VveC(Q),Vk, 1<k<K, Vi=0G,j), Ihv(xi~k) = v(x;k)




_37-

Theorem B.6 : Let rand s, ¥ and s' be K-tuples of real numbers greater than 1/2. We have
for any function v in H™(Q) N F™(Q)

K 1-2rk - 1-2
(8.27)  lIv- Tpvlloq < CLZycy (NGO IVIFR(A 1209y + MK

OO v 1,k 1)
+ H (A H “©))

Proof : Let us denote by I; the operator from C°(®) into $,,(©) defined by
(B.28) VveC(®),Vj,0<j<2M, Ijv(8)av(d)

Since over each Q, , I, is equal to Iy, ® Ib:(k) , we have
»
Iv=1yvllg 0 < Cllv-(ld @ Tggylv ”L2(/\k; L2(o)) V- (Tyg © ld)V“L2(/\k; L2(0))
*»

Then, we deduce the theorem from (B.8) and the classical result (see [7; Theorems 1.2]), valid
fors> 1/2,

(B.29) VveHX®), lv-Ude 1vlpe <CMlvi,e

in the more simple case where N(k) and M(k) are independent of k, we have

Corollary B.3: Let r be a real number > 1.We have for any function v in H'(Q) and for
any g > 172

(B.30) [lv=T.vllow <CM™ + (1+MNONZTY v
h' 10,0 rQ

Proof : Using Theorem B.S with r, = 5, = r, +s, , independent of k together with (B.21), yields

”V— IhV ”0’0 <C (M-r + N1/2—r + M—r' N1/2—r+r') ”V",»'Q

This inequality is validforanyr' =y > 1/2.

The end of this section being more related to our analysis than the previous general results,
we shall suppose that N(k) and M(k) are independent of k; besides, it is clear, though tedious to

write and read , how the general result would exist.
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We want to estimate the difference.
(B.31)  E(f,w) =(f.w) = (f,w), 6
for any f in C°(Q) and w in PN’K(/\) ® Sy . Let us denote by h* the couple (N-1,M), we can prove
LemmaB.3: Forany f in C°(Q) and anyw in P\ (A) ® Sy we have
(8.32) [EUAMWII<CIIf-Tlfllgq-N1-1,Tlloaliwlyg-

Proof: From (2.15); we deduce that
ECfw) = E(-TT,. f,w)
hence, from (3.28)
JECEW) < CLIT = T0u fllg g + I Tyt = T0u Tl d w ll
<CLIT= Tl fllgn + T = Ty flq] W llgq -

Using (B.9) and (B.27) yields immediatly
Theorem B.7:Let rand s, r' and s' be real numbers greater than 1/2. For any w in

Puk(A) @ Sy and any fin H(A;L%(0)) N LA(A; HX(©)) NH(A; H(9))
(8.33) JE(CwI<Clwly NI . 2009y * M IVIL2(A . 130y

172-r" -5 , .

Finally (B.9) and (B.30) gives
Corollary B.4: Let r be areal number > 1. Forany w in Py (A) ® Sy andany fin
H.(Q) and for any v > 1/2
(B.34) [ECTw)[<Cllw (M + (1+M™NIN2T) it
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Figure caption

Figure 1. The error in the velocity uy = (uN,vN) and the pressure py as a function of the total

number of degrees of freedom ( Gauss Legendre Lobatto points ) in the x—direction when solving
the discrete equation (4.12) corresponding to the test problem (4.13). The total interval
A =1-1,1[ is divided into two equal spectral elements of lengh A, = ]-1,0[ and A, = 10,1, i.e.

K = 2. Exponential convergence is obtained ( the plot in Tog-1lin).

Figure 2. Theerror in the pressure p, as a function of the total number of degrees of freedom
( Gauss Legendre Lobatto points ) in the x-direction when solving the discrete equétion (4.12)
corresponding to the test problem (4.14). The error is given for ¥y = 3 and for y = 5. The total
interval A = ]-1,1[ is not divided into any subintervals, i.e. K = 1, Algebraic convergence is

achieved asymptotically ( the plot is log-log ), although initially for small N faster convergence is

achieved.
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